
Copyright is held by the author / owner(s). 

SIGGRAPH 2010, Los Angeles, California, July 25 – 29, 2010. 

ISBN 978-1-4503-0210-4/10/0007 

Warping the space around an animated object

Daniele Federico∗
Dr.D Studios

Damien Fagnou†

Moving Picture Company
Tom Reed‡

Moving Picture Company

Figure 1: (a) A warped animation cycle. (b) A cycle deformed with bezier (green) and linear (red) interpolations.

1 Introduction

The creation of animation clips and the tweaking of existing character animation is
often a tedious, time-consuming task, especially in large-scale CG productions.
Traditionally these tasks were achieved by animators manually changing multiple
keyframe values for all the relevant animation rig controls. Starting with the idea that
a single animated object (e.g. a rig control) essentially defines a time-varying curve in
3D space - where the control points are defined by the keyframe values of the trans-
lation channels - we introduce a modeling approach for deforming these conceptual
3D curves. We will talk about our current implementation based on FFDs (Free Form
Deformations) as described in [Sederberg and Parry 1986], but we strongly believe
the same approach can have many other usages (e.g. modeling tools, collisions and
obstacle avoidance).

2 The space warping approach

Motion warping was demonstrated in [Witkin and Popović 1995], where the authors
describe an approach for warping the motion of an animated character starting with
a pre-existing cycle and providing new animator-defined key poses as inputs. Their
algorithm then modifies rotation and position values (when needed) for the skeleton
joints in order to pass through the keyframe poses.

The approach we propose is based on applying operators (e.g. deformers) directly on
the 3D space in which our animated objects are moving. This leads to a variation of the
paths and orientations of the objects over time. In order to find new translation values
for each object we map positions from the ”untouched” 3D space to the deformed
one. In the same way, the axes of the transformation matrices are deformed and then
orthogonalized before performing any conversion to Euler angles or quaternions. In
our system we have so far chosen not to consider any scaling factors.

At MPC as a proof of concept, our initial implementation entailed applying FFDs on
existing animation clips in order to create new motions. These resulting motions were
then used both in ALICE (MPC’s crowd engine) and directly in the animators’ Maya
sessions. The tool can be used on one or more characters at the same time with a
minimal impact on the scene’s performance. The lattice for the evaluated character
is generated by the tool itself in order to completely encompass the controls for the
entire input animation. If an object is evaluated outside of the lattices boundaries un-
predictable results may occur.
After the first tests we found that for modifying the animation for a character, it is

∗e-mail: df@danielefederico.it
†e-mail:damien-f@moving-picture.com
‡e-mail:tom-r@moving-picture.com

enough to apply FFDs only to the controls which move in world space, such as IK or
global controls. However our tool also works well for finding new local values for par-
ented transforms. In fact our tool always generates a new orthogonalized world matrix,
which in this case must be multiplied by the inverse of the parent matrix; therefore, this
approach can be also used with FK controls.
Our algorithm works with both bezier and linear interpolations. The former is used for
a smoother result, while the latter is employed whenever the user needs more control
over the character.
An undesired effect may occur whenever the lattice cells get too stretched, in fact this
can lead to the typical ”foot-skate” effect. Our tool cannot fix this situation; what we
have done instead is to provide users with some visual warnings to indicate when the
cells shrink or become too large. In this way undesired ”skating feet” can be pre-
vented.
Once the animator is happy with the achieved result, a baking process is run. The
baking process attempts to change only the values of existing key frames to align the
original animation with the deformed one, but will fall back to baking entire channels
when necessary. We provide other utilities for simplifying the baked animation curves
to our animators, so they won’t have the heavy task of cleaning the result.
This approach has been proved to be very powerful for two reasons:

1. its evaluation is never dependent on the next or previous configurations for the
considered object. This leads to a solution which depends only on the current
input matrix and the shape of the lattice.

2. it provides local control over motion. Each CV of the lattice can be animated
and affect only certain zones of our characters at a certain time.

We have used this tool in production on both primary and secondary characters achiev-
ing very satisfactory results. Specifically, our implementation has been proved to be
very suitable for modifying basic animation cycles into blocking and rough animations
for hero characters. Whereas animators would previously spend a day or more gener-
ating new cycles, we have observed them achieving the same result in only two hours
using this tool.

Thus far, we have found this solution to be efficient and fairly computationally inex-
pensive. Looking forward, we believe this approach could achieve its best usability
and performance in conjunction with a good animation layer system.

References
SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form deformation of solid geo-

metric models. SIGGRAPH Comput. Graph. 20, 4, 151–160.

WITKIN, A., AND POPOVIĆ, Z. 1995. Motion warping. Computer Graphics 29,
Annual Conference Series, 105–108.


